

A Low Cost, Light Weight, Polymer Derived Ceramic Telescope Mirror

United Materials & Systems Inc

Discussion Points

- Brief History of the Company
- Brief History the Technology
- Overview of Technology Fit
 - Deliverable for NASA
 - Summary

Brief History of the Company

3 Inventors

Business Structure

Business Development with UCF Venture Lab

3 Inventors

Arnold Hill

Masters Degree Student

Dr. Weifeng Fei

Post Doc

Dr. Linan An, UCF

Associate Professor and Director
Materials Processing Laboratory
Advanced Materials Processing & Analysis
Center (AMPAC)
University of Central Florida

Business Structure

Dr. Linan An, UCF

Technical Advisory Board Mark Tellam, PE

Board, Business Development **Arnold Hill**

President

Fengxia Ma

Principal Investigator

Dr. Weifeng Fei

Technical Staff

Business Development with UCF

Florida High Tech Corridor Council (UCF, USF, UFL)

UF FLORIDA

Provided External Matching Grant

(UCF Business School)

Brief History of the Technology

- Coating Applications
- Nano Technology Extensions
 - Bulk Material Applications

Coating Applications

Clear
Anti Corrosion
Gas Barrier
Easy to Clean
High Temperature

Ref:Clariant

Corrosion protection coatings

ESEM (environmental scanning electron microscopy) Experiment: Curing of polysilazane layer on a metal surface: dimensional stability

United Materials and Systems, Inc

Coating Applications

Application of PZane formulations

Nano Technology Extensions

Lithographically
Defined
Structures &
Components

Micro Fluidics

Ref: UCF AMPAC

Bulk Material Applications

Bulk Material Applications

Deliverable for NASA

Process Overview

Green Body Development

Ceramic Mirrors

Process Overview

Polymer Derived Ceramic Precursors = *Fetal Ceramic*

Working with Fluid, Curing with Heat and/or Light

Green Body Development

Green Body

(Ceramic Children)

Machining

is performed to yield near net shape, while plastic

No tooling

Low energy consumption

Ceramic Mirrors

Unique Adult Ceramic

Processed to 800-1000 (deg C)
Less energy consumed than
with sintering

Grinding Polishing

Accomplished relatively easily

Metalizing

Looking at feasibility options

Overview of Technology Fit

Fit with NASA Mirror Program

Summary

Fit with NASA Mirror Program

FOCUS: Areal Cost rather than Areal Density

HST primary mirror has an areal density of 175 Kg/m² (glass = heavy)

JWST primary mirror has an areal density of only 13.2 Kg/m^2 (beryllium = toxic)

Silicon Carbide high temperature sintering >1500 deg C, extremely hard

SiCN pyrolyzed at 1000 deg C... softer than SiC, but harder than glass

SiCN has an amorphous structure which takes a polish well

Summary (Interim 1 & 2)

Summary (Final Interim)

United Materials & Systems Inc Orlando, Florida

ahill@ceramicore.com

mtellam@ceramicore.com